我国人工智能+金融行业的技术关键
发布时间:2021-06-10 17:23:04 所属栏目:大数据 来源:互联网
导读:人工智能+金融主要是将计算机科学当中的人工智能技术作为主要的推动力,利用这项推动力为金融机构以及业务环节赋能,创新金融产品,重塑金融业务中的流程,对金融服务进行优化。在万物互联的时代,人工智能+金融能够基于大量多维度的用户数据与不断自我学习
人工智能+金融主要是将计算机科学当中的人工智能技术作为主要的推动力,利用这项推动力为金融机构以及业务环节赋能,创新金融产品,重塑金融业务中的流程,对金融服务进行优化。在万物互联的时代,人工智能+金融能够基于大量多维度的用户数据与不断自我学习优化的算法,让用户享受到智能化、实时化、定制化的垂直金融服务。
1
新一轮的科技革命和金融行业良好的适用性推动了人工智能+金融行业的发展
人工智能是新一轮科技革命和产业变革的重要驱动力量,“人工智能+”是将人工智能作为一项基础的计算机技术,将该项技术与传统行业中各个业务场景进行相互的深度融合。相对于简单的行业叠加,“人工智能+”更侧重于为传统行业的解决问题方式和流程再造过程提供新的思路和方法,加快新经济形态的演进进程,催生新的商业模式,提高运营效率,带来整个产业的全面升级。在十九大报告当中提出了要将包括人工智能在内的现代科学技术与传统的行业相结合,在 2018 年和 2019 年的政府工作报告当中,也再次强调了人工智能等新兴科技对于推动传统行业的重要意义。
金融行业能够在人工智能出现的时候有良好的适用性,是因为金融与数据紧密相关,金融行业在过去积累下来的大量数据就能够应用于机器学习,广泛应用在股票市场预测、风险评估和预警等方面。自动报告生成涉及到自然语言处理,因为一般的金融行业涉及到的报告具有固定的格式,因此可以利用自然语言处理的技术将报告需要的信息进行抓取,生成有固定格式的报告。知识图谱利用可视化的图形方式来显示各个事物实体发展的进程和实体之间的关系。语义搜索让搜索引擎的工作不再局限于用户当前具体输入的内容,而是计算机能够根据该内容进行合理地联系与扩散,来进一步准确地捕捉到用户实际期望搜索的内容,更准确地反馈给用户期望的搜索结果。
总体而言,金融行业离不开大量数据的积累和计算,也正是由于其在这个方面的先天性优势,可以与计算机科学的前沿技术紧密结合。人工智能作为计算机科学的一个前沿分支,金融行业的从业人员逐渐体会到了计算机科学对工作生活等带来的巨大变革,逐步尽力在行业内寻找人工智能的应用场景,并且在投资顾问、交易预测和便利金融服务的方面已经取得了一定的进展。
2
技术支撑在人工智能与金融场景的深度融合中至关重要
人工智能+金融行业的起源和基础的发展,还是取决于计算机科学的技术层面,也就是计算机科学的层面,突破点在于如何将人工智能技术与金融场景更好地融合。人工智能已经能够贯穿于金融活动的整个业务过程当中,包括海量的数据分析、对于金融政策的解读、自动生成报告、意外金融事件的预测以及与金融相关的信息搜索,与这些业务过程相对应的人工智能技术如图 1 所示。
△ 图1 人工智能技术在金融领域的应用
(1)机器学习
机器学习对于人工智能来说至关重要,正是因为有机器学习,计算机才能够拥有一定的智能,目前被普遍应用于与人工智能相关的各个领域,包括智能金融的领域。机器学习的原理是在拥有大量过去由专家决策的数据基础之上选取每类事件的特征值,计算机通过算法程序对特征值进行分析之后,对再次发生的事件的特征值进行提取、分析、比对和最终分类,从而达到智能识别的目的。金融行业在过去积累下来的大量数据就能够应用于机器学习,实现了人工的由数据到模型的过程。
(2)自然语言处理
自然语言处理研究的内容包括实现人与计算机用自然语言沟通的各种理论和方法。它是人工智能领域中一个新兴的重要方向,这项技术处于计算机科学与语言科学的交叉领域,它使人类不再是使用编译器和编程语言和计算机进行沟通。
自然语言处理技术的应用主要涉及两个方面:自动报告生成和文本结构化处理。自动报告生成涉及到自然语言处理,因为一般的金融行业涉及到的报告具有固定的格式,因此可以利用自然语言处理的技术将报告需要的信息进行抓取,生成有固定格式的报告。除此之外,在机器学习当中,如果单从数字推测模型则具有一定的局限性,而且有些信息是不以数据的形式出现的,因此有时需要引入文本形式的信息,能够通过自然语言处理技术进行分析,将非结构化数据结构化处理,从中得到有价值的信息。
![]() (编辑:咸宁站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |